Эритропоэтин - представляет собой гликопротеиновый гормон, точнее цитокин, основной регулятор эритропоэза, который стимулирует образование эритроцитов из поздних клеток-предшественников и повышает выход ретикулоцитов из костного мозга в зависимости от потребления кислорода. До тех пор пока не нарушена оксигенация тканей, концентрация эритропоэтина, так же, как и количество циркулирующих эритроцитов, остается постоянной. Выработка эритропоэтина регулируется на уровне транскрипции его гена, а поскольку единственным физиологическим стимулом, увеличивающим количество синтезирующих эритропоэтин клеток, является гипоксия, ни выработка, ни метаболизм эритропоэтина от его концентрации в плазме не зависят. В организме здорового человека находится примерно 2,3*10^13 эритроцитов, время жизни которых составляет в среднем 120 дней. Следовательно, в организме постоянно должно происходить обновление пула эритроцитов со скоростью примерно 2,3 клеток за одну секунду. Система дифференцировки эритроидных клеток должна строго регулироваться для поддержания постоянного уровня циркулирующих эритроцитов при нормальных условиях. Кроме того, эта система должна быть высоко чувствительна к изменению количества кислорода в организме.
В настоящее время получено множество данных, свидетельствующих о том, что ключевым фактором, который обеспечивает контроль дифференцировки клеток эритроидного ряда, является циркулирующий в крови эритропоэтин.
Эритропоэтин - чрезвычайно активный гормон, оказывающий свое действие в организме в пикомолярных концентрациях. Небольшие колебания его концентрации в крови приводят к существенным изменениям скорости эритропоэза, а нормальный диапазон его концентраций колеблется от до 4 до 26 МЕ/л. Поэтому пока концентрация гемоглобина не станет ниже 105 г/л, концентрация эритропоэтина не выходит за указанный диапазон и выявить ее повышение невозможно (если только не знать ее исходные значения). Эритроцитоз приводит к подавлению выработки эритропоэтина по механизму отрицательной обратной связи. Это обусловлено не только повышением доставки кислорода к тканям из-за увеличения числа циркулирующих эритроцитов, но и увеличением вязкости крови. Для спортсмена это означает снижение продукции собственного гормона при введении экзогенного и нарушение механизмов регуляции выработки эритроцитов. Поэтому, используя эритропоэтин в спорте в качестве допинга, спортсмену следует задуматься о дальнейшей судьбе продукции эритроцитов в своем организме.
Допинг тесты:
Как правило, эритропоэтин выявляется в образцах мочи или крови. В крови выявляется с большей вероятностью, чем в моче. Период полувыведения составляет 5-9 часов, то есть вероятность обнаружения существенно снижается уже через 2-3 суток.
В качестве маскирующего агента применяется гепарин. Также используют введение протеаз в мочевой пузырь через катетер.
Физиологическая роль эритропоэтина:
Долгое время вопрос о клетках, в норме продуцирующих эритропоэтин, оставался открытым. Это было связано прежде всего с отсутствием прямых методов идентификации клеток, синтезирующих гормон. Идентификацию клеток проводили косвенными методами, включая способность тех или иных культур тканей синтезировать продукт in vitro. Считалось, что основными кандидатами на роль ЭПО-продуцирующих клеток являются клубочковые клетки, а также клетки проксимальной части канальцев. Клонирование гена эритропоэтина, а также разработка методов гибридизации in situ, позволяющая идентифицировать непосредственно те клетки, в которых происходит экспрессия тех или иных генов, изменило представления о природе клеток, синтезирующих эритропоэтин. Методом гибридизации in situ было показано, что клетки, в которых синтезируется мРНК эритропоэтина, не являются гломерулярными или тубулярными. По-видимому, основным местом синтеза ЭПО в почках являются интерстициальные клетки или капиллярные эндотелиальные клетки. Как уже отмечалось, главным фактором, регулирующим продукцию ЭПО, является гипоксия. В условиях гипоксии количество циркулирующего в плазме ЭПО возрастает примерно в 1000 раз и достигает 5-30 ЕД/мл. В многочисленных экспериментах с изолированной почкой показано, что она содержит сенсоры, реагирующие на изменения концентрации кислорода.
Еще J. Schuster и сотрудники в 1987 г. исследовали кинетику продукции эритропоэтина в ответ на гипоксию. Было показано, что примерно через 1 ч после установления гипоксии количество мРНК эритропоэтина в почке возрастает, и мРНК продолжает накапливаться в течение 4 ч. При снятии гипоксии уровень мРНК ЭПО быстро снижается. Изменения количества плазменного и почечного эритропоэтина, выявляемые с помощью эритропоэтин-специфических антител, происходят строго параллельно с изменением количества мРНК с соответствующим лаг-периодом. Полученные в данной работе результаты свидетельствуют о том, что при гипоксии стимулируется de novo продукция ЭПО.
В лаборатории S. Konry в 1989 г. исследовали процесс индукции синтеза ЭПО с помощью метода, гибридизации in situ на тканевых срезах коркового вещества почки. Было обнаружено, что в условиях анемии продукция ЭПО значительно возрастает, хотя интенсивность гибридизации с мРНК ЭПО в индивидуальных клетках остается без изменений. Показано, что усиление продукции ЭПО связано с увеличением числа клеток, синтезирующих гормон. По мере восстановления нормального гематокрита количество эритропоэтин-синтезирующих клеток быстро уменьшается, причем кинетика изменения коррелирует с кинетикой снижения количества мРНК ЭПО и циркулирующего гормона. Данные гистологического анализа свидетельствуют о том, что ЭПО синтезируется интерстициальными клетками корковой части почки.
Показано, что от 5 до 15 % плазменного эритропоэтина у взрослых имеет внепочечное происхождение. И если у эмбрионов основное место синтеза эритропоэтина - печень, то во взрослом организме печень также является основным органом, продуцирующим ЭПО, но внепочечный. Этот вывод был подтвержден в недавних экспериментах по выявлению мРНК ЭПО в различных органах. По-видимому, изменение основного места синтеза ЭПО в течение онтогенеза является генетически детерминированным событием.
Синтез эритропоэтина в организме опосредован значительным количеством биохимических кофакторов и стимуляторов. Предполагается, что гипоксия приводит к снижению уровня кислорода в специфических сенсорных клетках почки, что вызывает усиление продукции простагландинов в клубочковых клетках. Показано, что простагландины играют важную роль в стимуляции продукции эритропоэтина. Ингибиторы синтеза простагландинов оказывают подавляющий эффект на продукцию ЭПО при гипоксии. Основной вклад в биосинтез простагландинов при гипоксии вносит, по-видимому, циклооксигеназная система. При гипоксии (а также при введении ионов кобальта) происходит высвобождение нейтральных протеаз и лизосомных гидролаз в почках, которые, как было показано, также стимулируют продукцию ЭПО. Высвобождение лизосомальных ферментов, по-видимому, ассоциировано с увеличением продукции цГМФ. Показано, что лизосомальные ферменты активируются при участии протеинкиназ, которые, в свою очередь, активируются цАМФ.
При гипоксии наблюдается индукция активности фосфолипазы А2, что приводит к возрастанию уровня арахидонатов, которые при участии циклооксигеназы превращаются в эндопероксиды. Отмечено, что гипоксия является оптимальным условием для активности циклооксигеназы. Вероятно, важную роль в этих биохимических событиях играет кальциевая система: ионы кальция стимулируют активность фосфолипазы А, и образование простагландина. Простаноиды, в свою очередь, могут индуцировать активность аденилатциклазы и запускать каскад биохимических событий, приводящих к фосфорилированию и активации гидролаз. Какова роль гидролаз и какова цепочка, приводящая в конце концов к усилению синтеза ЭПО, остается пока невыясненным. Стимулирующей биосинтез ЭПО активностью обладают также некоторые гормоны гипоталамо-гипофизарной системы, тиреоидные гормоны и некоторые стероидные гормоны. Специфическим индуктором продукции ЭПО являются ионы кобальта, механизм действия которых на систему биосинтеза ЭПО пока не ясен. Эта система является привлекательной экспериментальной моделью для изучения индукции биосинтеза ЭПО.
Молекула эритропоэтина человека, в которой на долю углеводного компонента приходится 40-50 % молекулярной массы (молекулярная масса гликопротеида 32-36*10^3 а. е. м., а расчетная молекулярная масса белковой части - 18 399*10^3 а. е. м.), состоит из 193 остатков аминокислот. Величина изоэлектрической точки ЭПО низкая (рН 3,5-4,0), что обусловлено наличием сиаловых кислот в терминальных положениях углеводных цепочек эритропоэтина. Изоэлектрическая фокусировка плазменного ЭПО в полиакриамидном геле позволяет выявить несколько фракций, идентичных по молекулярной массе, но различающихся по величине их изоэлектрических точек, что свидетельствует о гетерогенности в структруре углеводной части гормона. Отщепление сиаловых кислот при обработке нейраминидазой или при кислотном гидролизе приводит к потере стабильности гормона in vivo, но не влияет на его активность in vitro. В четырех участках к белковой цепи присоединены гликозидные остатки, которые могут представлять различные сахара, поэтому существует несколько разновидностей ЭПО с одинаковой биологической активностью, но несколько отличающиеся по своим физико-химическим свойствам.
В результате анализа аминокислотной последовательности эритропоэтина человека выявлено три потенциальных сайта N-гликозилирования, которые включают консенсус-последовательность Asn-X-Ser/Thr. В экспериментах по обработке гормона N-гликозидазой, специфически отщепляющей олигосахаридные цепочки, связанные с аспарагиновым остатком N-гликозидной связью, было подтверждено предположение о наличии трех сайтов N-гликозилирования в молекуле ЭПО. В результате экспериментов по обработке гормона О-гликозидазой установлено, что он содержит также олигосахаридные цепочки, с